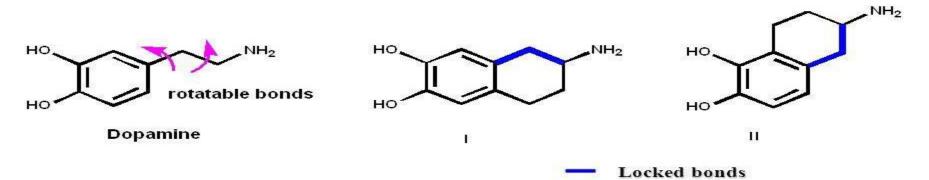




# Pharmacophore and Bioisosteres

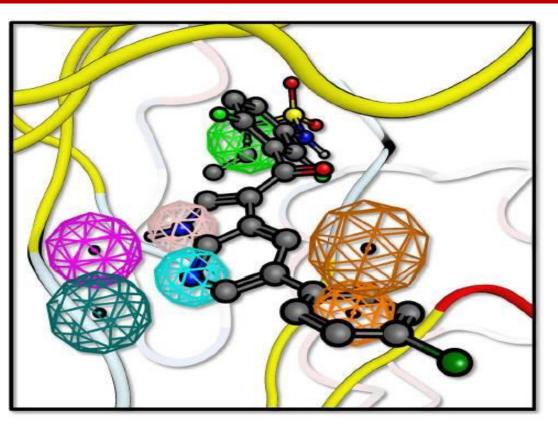
Presented by:

Khaled tajory
Hajer Farhate
Sondos Mohamed
2nd year PharmD students

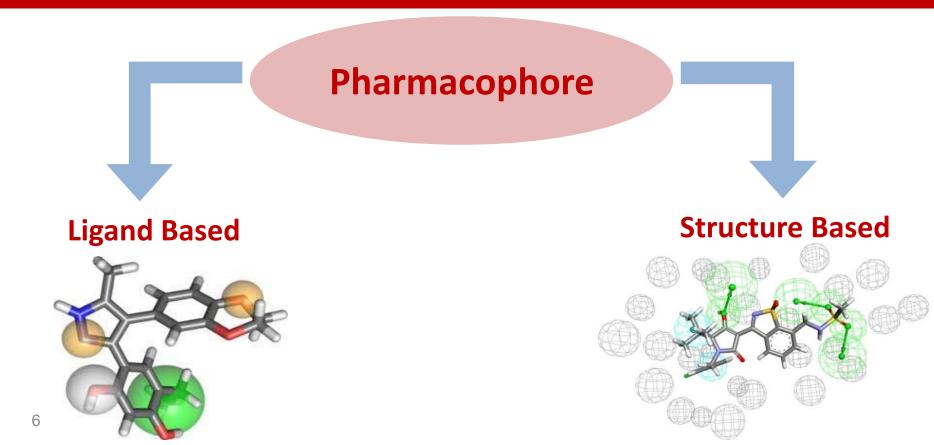

# Objectives

- 1. Define pharmacophore.
- 2. List pharmacophore types of functional groups.
- 3. Describe pharmacophore modeling.
- 4. Define bioisosteres.
- 5. Classify bioisosteres.
- 6. Describe why bioisosteres are replaced.




# **Definition of Pharmacophore**

Is the region of the molecule containing the essential organic functional groups that directly interact with the receptor active site and, therefore, confers the biologic activity of interest.




#### **Pharmacophore Types of Functional Groups**

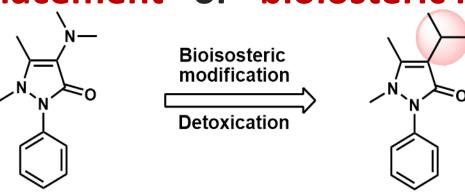




# Pharmacophore Modeling



## Pharmacophore Molecule Feature


- ➤ 3D: (Hydrophobic group, charged ionizable group, H donor or acceptor).
- **>** 2D: (Substructures).
- > 1D: (Physical or biological properties).



## **Definition of Bioisosteres**

Is the replacement or modification of specific pharmacophore (functional) groups with other groups having similar properties is known as

"isosteric replacement" or "bioiosteric replacement."



Aminopyrine

Propylphenazone

# Classification



# **Classical Bioisosteres**

Classical bioisosteres represent the result of a nearly appreciation of the concept and encompass structurally simple atoms or groups.

CI, Br, CF<sub>3</sub>

Divalent bioisosteres:

—C=S, —C=O, —C=NH, —C=C—

Trivalent atoms or groups:

Monovalent bioisosteres

F, OH, NH, or CH, for H

F. H

OH, NH,

-P= , -As=

SH, OH

#### 

Ring equivalents:

# **Non-Classical Bioisosteres**

Non classical bioisosteres are structurally distinct, usually comprised of different number of atoms and exhibit different steric and electronic properties.

#### 1) Cyclic and noncyclic isostere

Diethylstilbestrol (Artifical female hormone)

#### 2) Exchangeable group

ex.) Carboxylic acid isosteres

# Bioisosteres are replaced, Why?!





Improved selectivity

Fewer side effect

**Decreased toxicity** 

Improved pharmacokinetics

**Increase stability** 

Patented lead compounds



# All the bioisosteric not produce utilization biologic activity.

True



# Summary

- ✓ Pharmacophore : it is the group of atoms in the molecule of a drug responsible for the drug's action.
- $\checkmark$  Ligand-based and structure-based methods have been developed for improving pharmacophore modeling .
- ✓ bioisosterism" to describe functional groups related in structure that have similar biologic effects.
- ✓ There are two general types of bioisosteres: classical and non- classical.
- ✓ Bioisosterism is used to reduce toxicity, change bioavailability, or modify the activity of the lead compound, and may alter the metabolism of the lead.

### References

- ☐ Chemistry, F. is principlel of medicinal. (2000). Foye's principles of medicinal chemistry.
- ☐ https://www.profacgen.com/pharmacophore-modeling.htm.
- ☐ https://www.slideshare.net/tubakhan10/bioisostersm.
- □ http://www.f.utokyo.ac.jp/~kanai/seminar/pdf/Lit\_Y\_Morita\_M1.pdf.

