# **Principles of Inheritance**

Dr. Ramadan M. Bayou AP, MD, Consultant Neonatologist

#### **OVERVIEW**

- > Introduction
- > Types of Genetic diseases
- > Genetic Assessment
- Drawing Pedigree
- Single gene diseases
- Chromosomal diseases
- Polygenic diseases

### Introduction

• Genetic disorders place considerable health and economic burdens NOT only on affected individuals and their families but also on the community.

### Introduction

Despite a general fall in the perinatal mortality rate, the incidence of lethal malformations in newborn infants remains constant.

Between 2 and 5% of all live born infants have genetic disorders or congenital malformations.

## Prevalence of genetic disease

#### Type of genetic disease

Estimated prevalence per 1000 population

| Single gene                |
|----------------------------|
| <b>Autosomal dominant</b>  |
| <b>Autosomal recessive</b> |
| X linked recessive         |

$$2-10$$
 $2$ 
 $1-2$ 

Chromosomal abnormalities

**6–7** 

Common disorders with appreciable genetic component

7-10

Congenital malformations

**20** 

**Total** 

38-51

# Types of genetic diseases

#### 1. Single gene (mendelian)

- Numerous though individually rare
- Clear pattern of inheritance
- High risk to relatives

#### 2. Multifactorial

- Common disorders
- No clear pattern of inheritance
- Low or moderate risk to relatives

# Type of genetic disease

#### 3. Chromosomal

- Mostly rare
- No clear pattern of inheritance
- Usually low risk to relatives

# Common reasons for cytogenetic analysis

- Postnatal
- > Newborn infants with birth defect
- Children with learning disability
- Children with dysmorphic features
- Infertility
- Recurrent miscarriages

# Common reasons for cytogenetic analysis

- Prenatal
- Abnormalities on ultrasound scan
- Increased risk of Down syndrome (maternal age or biochemical screening)
- Previous child with a chromosomal abnormality
- One parent carries a structural chromosomal abnormality

 Consanguinity is an important issue to identify in genetic assessment because of the increased risk of autosomal recessive disorders occurring in the offspring of consanguineous couples.

### Genetic assessment

- Genetic diagnosis
- History
- Examination
- Investigation

# Genetic testing defined:

- Diagnostic confirms a clinical diagnosis in a symptomatic individual
- **Presymptomatic** ("predictive") confirms that an individual will develop the condition later in life
- Susceptibility identifies an individual at increased risk of developing the condition later in life
- Carrier identifies a healthy individual at risk of having children affected by the condition
- Prenatal diagnoses an affected fetus

# Drawing a pedigree

#### Standard Pedigree Nomenclature







# Drawing a pedigree



#### **Autosomal Dominant**

- One parent is affected
- Manifested (occurs) in heterozygous state (the presence of 1 abnormal gene on one of the autosomes)
- Males and females are equally affected.
- 50% chance of children getting affected.
- New mutation
- Incomplete penetrance or non penetrance
- Variable expression

# Examples of Autosomal Dominant Disorders

- Achondroplasia
- Marfan syndrome
- Neurofibromatosis
- Tuberous sclerosis.
- Ehlers–Danlos syndrome
- Huntington disease
- Myotonic dystrophy

- Noonan syndrome
- Osteogenesis imperfecta
- Otosclerosis
- Polyposis coli
- Familial hypercholesterolaemia

### **Autosomal Dominant inheritance**



### **Autosomal Dominant**



#### Autosomal Recessive

- \*Affected individuals are homozygous for the abnormal gene.
- Each unaffected parent will be a heterozygous carrier(Healthy carriers)
- Two carrier parents have a 1 in 4 risk of having an affected child
- \* Risk of these disorders is increased by consanguinity
- Autosomal recessive disorders often affect metabolic pathways, whereas autosomal dominant disorders often affect structural proteins.

# **Examples of Autosomal Recessive Disorders**

- Congenital adrenal hyperplasia
- Cystic fibrosis
- Friedreich ataxia
- Galactosaemia
- Glycogen storage diseases
- Hurler syndrome
- Maple syrup urine disease

- Oculocutaneous albinism
- Phenylketonuria
- Sickle cell disease
- Tay –Sachs disease
- Thalassemia
- Werdnig-Hoffmann disease (SMA I).

### Autosomal recessive inheritance



#### **Autosomal Dominant** Autosomal Recessive



Figure 5.14 Representative pedigree analysis of (a) Autosomal dominant trait (for example: Myotonic dystrophy) (b) Autosomal recessive trait (for example: Sickle-cell anaemia)

#### X-Linked Recessive Inheritance

- Males are more commonly and more severely affected than females.
- Female carriers are **generally** unaffected, or if affected, they are affected more mildly than males.
- Female carriers have a 25% risk for having an affected son, a 25% risk for a carrier daughter, and a 50% chance of having a child that does not inherit the mutated X-linked gene.
- Affected males will have only carrier daughters.

#### X-Linked Recessive Inheritance

- Each son of a female carrier has a 1 in 2 (50%) risk of being affected
- Each daughter of a female carrier has a 1 in 2 (50%) risk of being a carrier

### X-linked recessive inheritance

ve disorders

dystrophies

enase (G6PD)

charidosis II).

linked recessive , a carrier for ows affected males igh females, and ected sons inheritance).



# Examples of X-Linked Recessive Disorders

- Colour blindness (red–green)
- Duchenne and Becker muscular dystrophies
- Fragile X syndrome
- Glucose-6-phosphate dehydrogenase (G6PD) deficiency
- Haemophilia A and B
- Hunter syndrome (Mucopolysaccharidosis II).

### X-linked dominant

- Female carriers typically manifest abnormal findings.(= Males & females affected)
- An affected man will have only affected daughters and unaffected sons.
- Half of the offspring of an affected woman will be affected
- X-linked dominant conditions are lethal in a high percentage of males e.g......

# Examples of X-Linked Dominant Disorders

- Hypophosphatemic Rickets
   (Vit. D Resistant Rickets)
- Rett Syndrome
- •Incontinentia pigmenti.

## Autosomal .....?



# X-LINKED .....???



#### Chromosomal abnormalities

- Chromosomal abnormalities are either numerical or structural.
- 20% of all conceptions are estimated to be lost spontaneously, and about half of these are associated with a chromosomal abnormality, mainly autosomal trisomy.
- Cytogenetic studies of gametes have shown that 10% of spermatozoa and 25% of mature oocytes are chromosomally abnormal

# Down syndrome

- The most common autosomal trisomy and the most common genetic cause of severe learning difficulties.
- Risk of having a child with trisomy 21 increases with maternal age.
- The risk of recurrence after the birth of a child with trisomy 21 is increased by
  - **about 1%** above the population age related risk.

# Cytogenetics

- The extra chromosome 21 may result from
- **▶** Meiotic non-disjunction (94%)
- ➤ Translocation (5%)
- ➤ Mosaicism (1%)

**Incidence : All ages 1: 650 – 800** 

increase w. increase maternal age to

1:100 by 40 years old

1: 40 by 44 years old





## Typical craniofacial appearance

- Round face and flat nasal bridge
- Lateral Upslanted palpebral fissures
- Epicanthic folds (a fold of skin running across the inner edge of the palpebral fissure)
- Brushfield spots in iris (pigmented spots)
- Small mouth and protruding tongue
- Small ears
- Flat occiput and third fontanelle







- Short neck
- Single palmar creases, incurved fifth finger and
- wide 'sandal' gap between toes
- Hypotonia
- Congenital heart defects (40%)
- Duodenal atresia
- Hirschsprung disease

# Later medical problems

- Delayed motor milestones
- Moderate to severe learning difficulties
- Small stature
- Increased risk of hypothyroidism and coeliac disease
- Epilepsy
- Alzheimer's disease.

# Later medical problems

- Increased susceptibility to infections
- Hearing impairment from secretory otitis media
- Visual impairment from cataracts, squints, myopia
- Increased risk of leukaemia and solid tumours
- Risk of atlanto-axial instability

# Turner syndrome (45, X)

- □ The incidence is about 1 in 2500 live- born females
- The incidence does not increase with maternal age and risk of recurrence is very low.

#### **Treatment is with:**

- Growth hormone therapy
- Estrogen replacement for development of secondary sexual characteristics at the time of puberty (but infertility persists).

#### Clinical features of Turner

- Lymphedema of hands and feet in neonate,
- Spoon-shaped nails
- ☐ Short stature a cardinal feature
- Neck webbing or thick neck
- Wide carrying angle (cubitus valgus)
- Widely spaced nipples
- Congenital heart defects (particularly coarctation of the aorta)

#### Clinical features of Turner

- Delayed puberty
- Ovarian dysgenesis resulting in infertility, although
- Hypothyroidism
- Renal anomalies
- Pigmented moles
- Recurrent otitis media
- Normal intellectual function in most



# Polygenic or multifactorial inheritance

- Congenital malformations
- > Neural tube defects (anencephaly and spina bifida)
- Congenital heart disease
- Cleft lip and palate
- Pyloric stenosis
- Congenital dislocation of the hip
- > Talipes equinovarus
- Hypospadias