Respiratory Failure (RF)

Definitions

Clinical conditions in which

■ PaO2 < 60 mmHg while breathing room air or

a PaCO2 > 50 mmHg

I e Failure of oxygenation and carbon dioxide elimination

■ Type 1 or 2

Arterial Blood Gases (ABG) Normal values at sea level

□ pH 7.35-7.45

□ PaO2 >70 mmHg

□ PaCO2 35-45 mmHg

□ HCO3 22-28 mmol/1

□ ↓pH Acidosis

□ ↑pH Alkalosis

□ ↓ PaO2 Hypoxemia

□ ↑PaCO2 Hypercapnia

□ ↓pH+ ↑PaCO2 Resp acidosis

□ ↑HCO3

Classification of resp failure:

- ■Type 1
- □ Hypoxemic RF **
- □ PaO2 < 60 mmHg with normal or ↓ PaCO2
- Associated with acute diseases of the lung
- Pulmonary edema (Cardiogenic, noncardiogenic (ARDS), pneumonia, pulmonary hemorrhage, and collapse

- ■Type 2
- □ Hypercapnic RF
- \square PaCO2 > 50 mmHg
- Hypoxemia is common
- Drug overdose,
 neuromuscular disease,
 chest wall deformity,
 COPD, and severe
 Bronchial asthma

Distinction between Acute and Chronic RF

- □ Acute RF
- Develops over minutes to hours
- \square \downarrow pH quickly to <7.2
- Example; Pneumonia

- □ Chronic RF
- Develops over days
- □ ↑ in HCO3
- □ ↓ pH slightly
- Polycythemia, Corpulmonale
- Example; COPD

Causes of Respiratory Failure

Pathophysiologic causes of Acute RF

- Hypoventilation
- V/P mismatch

- pulmonary shunt
- Diffusion abnormality

Pathophysiologic causes of Acute RF 1 - Hypoventilation

- □ Occurs when ventilation ↓ 4-6 l/min
- Causes:
 - Depression of CNS from drugs.
 - Neuromuscular disease of respiratory ms.

Pathophysiologic causes of Acute RF

- Hypoventilation
- V/P mismatch
- Shunt
- Diffusion abnormality

Pathophysiologic causes of Acute RF 2 -V/Q mismatch

- Most common cause of hypoxemia
- □ Low V/Q ratio, may occur either from
 - Decrease of ventilation 2ry to airway or interstitial lung disease

Pathophysiologic causes of Acute RF

- Hypoventilation
- V/P mismatch
- Shunt
- Diffusion abnormality

Pathophysiologic causes of Acute RF 3 - Shunt

- □ The deoxygenated blood bypasses the ventilated alveoli and mixes with oxygenated blood → hypoxemia
- Persistent of hypoxemia despite 100% O2 inhalation

Pathophysiologic causes of Acute RF Causes of Shunt

- Intracardiac
 - Right to left shunt
 - Eisenmenger's synd
- Pulmonary
 - Pulmonary contusion

Pathophysiologic causes of Acute RF

- Hypoventilation
- V/P mismatch
- Shunt
- Diffusion abnormality

Pathophysiologic causes of Acute RF Diffusion abnormality

- Due to
 - abnormality of the alveolar membrane
- Causes
 - ARDS
 - Fibrotic lung disease

Increased Dead Space (wasted ventilation)

- Hypovolemia
- Low cardiac output
- Pulmonary embolus

Causes of Respiratory Failure

Manifestations of Respiratory Distress

- Altered mental status especially anxiety!!!
 Anxiety is a result of respiratory distress, almost NEVER the cause.
- Tachypnea, nasal flaring
- Accessory muscle use, retractions, paradoxical breathing pattern, respiratory alternans
- Increased work of breathing
- Catecholamine release
- Tachycardia, diaphoresis, hypertension
- Abnormal ABG.
- Neuromuscular failure is different from above monitor vital capacity – intubate near 15cc/kg

Diagnosis of RF

1 – Clinical (symptoms, signs)

- Hypoxemia
- Dyspnea, Cyanosis
- Confusion, somnolence, fits
- □ Tachycardia, arrhythmia
- Tachypnea.
- Use of accessory ms
- Nasal flaring
- Recession of intercostal ms
- Polycythemia
- Pulmonary HTN,Corpulmonale, Rt. HF

- **⊣ Hypercapnia**
- †Cerebral blood flow, and CSF Pressure
- Headache
- Asterixis
- Papilloedema
- Warm extremities, collapsing pulse
- Acidosis (respiratory)
- □ ↓pH.

Diagnosis of RF 3 - Investigations

- \square ABG
- □ CBC, Hb
 - Polycythemia
 - Urea, Creatinine
- □ Electrolytes (K, Mg)
- \square ↑ CPK, ↑ Troponin 1
- □ ↑CPK, normal Troponin 1
- \Box TSH

- → tissue hypoxemia
- \rightarrow Aggravate Resp F
- \rightarrow MI
- → Muscle dis myositis
- → Hypothyroidism

Diagnosis of Resp F 3 - Investigations

Chest x ray

- → Pulmonary edema
- \rightarrow ARDS

Echocardiography

- → Cardiogenic pulmonary edema
- \rightarrow ARDS
- → PAP, Rt ventricular hypertrophy
- PFT- (FEV1/ FVC ratio)
 - Decrease
- → Airflow obstruction

Increase

→ Restrictive lung disease

Diagnosis of RF 3 - Investigations

- \rightarrow cardiac cause of RF
- → Arrhythmia due to hypoxemia and severe acidosis
- ■Pulmonary capillary wedge pressure (PCWP)
 - Normal \rightarrow ARDS (<18 mmHg)
 - Increased → Cardiogenic pulmonary edema

- □ ICU admition
- □ 1 -Airway management
 - Endotracheal intubation:
 - Indications
 - Severe Hypoxemia
 - Altered mental status
 - Importance
 - precise O2 delivery to the lungs
 - remove secretion
 - ensures adequate ventilation

- Noninvasive Ventilatory support (IPPV)
- Mild to moderate RF
- Patient should have
 - Intact airway,
 - Alert, normal airway protective reflexes
- □ Nasal or full face mask
 - Improve oxygenation,
 - Reduce work of breathing
 - Increase cardiac output
- □ AECOPD, asthma, CHF

- Treatment of the underlying causes
- □ After correction of hypoxemia, hemodynamic stability
- Antibiotics
 - Pneumonia
 - Infection
- □ Bronchodilators (COPD, BA)
 - Salbutamol
 - reduce bronchospasm
 - airway resistance

- □ Treatment of the underlying causes
- □ Anticholinergics (COPD,BA)
- Diuretics (pulmonary edema)
 - Frusemide,

- □ Treatment of the underlying causes
- □ Methyl prednisone (COPD, BA)
- □ Fluids and electrolytes
 - Maintain fluid balance and avoid fluid overload
- □ IV nutritional support
 - To restore strength, loss of ms mass
 - Fat, carbohydrate, protein

- Treatment of the underlying causes
- Physiotherapy
 - Chest percussion to loosen secretion
 - Suction of airways
 - Help to drain secretion
 - Maintain alveolar inflation
 - Prevent atelectasis, help lung expansion

Indications for Endotracheal Intubation

- Airway protection (outside ICU?)
- Relief of airway obstruction
- Respiratory failure or impending respiratory failure.
- Need for hyperventilation increase ICP
- Unsustainable work of breathing
- Facilitate suctioning/pulmonary toilet
- Shock .

Decision to intubate

- Clinical decision-not based on ABG
- Error on the side of patient safety
- Think ahead- if need to intubation is expected in next 24hr, intubate now
- Endotracheal tubes are not a disease and ventilators are not an addiction i.e. Intubation does not cause ventilator dependence

Continuous Positive Airway Pressure (CPAP)

- No machine breaths delivered
- Allows spontaneous breathing at elevated baseline pressure
- Patient controls rate and tidal volume

Assist-Control Ventilation

- You set tidal volume and minimum rate
- Additional breaths delivered with minimal inspiratory effort - pt sets actual rate
- Advantages: reduced work of breathing;

Synchronized Intermittent Mandatory Ventilation (SIMV)

Volume cycled breaths at a preset rate

Pressure-Support Ventilation

 Pressure assist during spontaneous inspiration with flow-cycled breath

Weaning from mechanical ventilation

- Stable underlying respiratory status
- Adequate oxygenation
- Intact respiratory drive
- Stable cardiovascular status
- Patient is a wake, has good nutrition, able to cough and breath deeply

Complications of Acute resp F

- Pulmonary
 - Pulmonary embolism
 - barotrauma
 - pulmonary fibrosis (ARDS)
 - Nosocomial pneumonia
- Cardiovascular
 - Hypotension, ↓COP
 - Arrhythmia
 - MI.
- □ GIT
 - Stress ulcer.

- ☐ Infections
 - Nosocomial infection
 - Pneumonia, UTI, catheter related sepsis
- □ Renal
 - ARF (hypoperfusion, nephrotoxic drugs)
 - Poor prognosis
- Nutritional
 - Malnutrition, hypoglycemia, electrolyte disturbances

□ Thank u